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Abstract 

 Telegraph equations are hyperbolic partial differential equations that may be used to represent 

reaction-diffusion processes in a variety of engineering and biological disciplines. The development of 

numerical techniques for telegraph type equations has received a lot of interest in the literature in recent 

years. The primary goal of this article is to introduce and evaluate a new approach for approximating the 

time-fractional telegraph equation using spline functions. Initially, an operational matrix technique based on 

the consolidation of Fibonacci wavelets and block pulse functions is presented to derive the solutions to 

Time-Fractional Telegraph Equations (TFTs). The suggested approach converts the fractional model into an 

algebraic equation system that can be solved using the Newton iteration method. The Crank Nicolson 

approach is also offered for the solution of three-dimensional time-fractional telegraph equations using the 

Trigonometric Quintic B-spline (TQBS). The rationale behind using the collocation method is to select 

specific collocation spots where the differential equation is fulfilled exactly. The suggested technique 

combats nonlinearity by employing a quasilinearization linearization procedure. The discretization of the 

time-fractional derivative is done using the Caputo fractional derivative formula. The calculated solutions are 

obtained using a combination of the Caputo fractional derivative and a trigonometric Quintic B-spline. The 

main objective is to verify the well-posedness and produce a numerical solution for an initial-boundary value 

issue for a hyperbolic equation using finite-difference methods. Accordingly, the research developed the 

exponentially fitted approach for solving initial boundary value problems using finite difference formulae 

and temporal frequencies. The scheme’s convergence is demonstrated using normal analytical approaches, 

demonstrating that the method is unconditionally stable and has an order of convergence. MATLAB software 

is used to run the numerical simulations. Two model examples with boundary layer behaviour are 
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investigated to support the theoretical conclusion. Furthermore, the graphs show that numerical and exact 

solutions are near together, demonstrating the method's precision. 

Keywords: Time Fractional Telegraph Equation, Three-Dimensional, Quintic B-spline, Fibonacci Wavelets, 

Crank Nicholson 

1. Introduction: 

 Fractional Differential Equations (FDEs) have piqued the interest of scientists and engineers around 

the world in recent decades due to their potential value and applications in quantum mechanics, astrophysics, 

hadron spectroscopy, engineering, classical mechanics and other fields, and other fields [1]. The fractional 

telegraph equation, which belongs to the group of FDEs, has been studied by a significant number of scholars 

during the last two decades [2]. One of the primary mathematical models developing in the study of electrical 

signals in transmission lines and wave phenomena is the fractional telegraph equation. It is a member of the 

hyperbolic partial differential equations family [3]. Cascaval examined the Fractional Telegraph Equation 

(FTE) for the first time in 2002, discussing several features of the time-fractional telegraph equation, such as 

the solution's asymptotic behaviour [4]. Many authors have lately investigated the time-fractional telegraph 

equations. 

Time Fractional Telegraph Equations (TFTE) 

 To solve TFTE, several numerical and analytical algorithms have been developed. Cascaval [5] 

studied the well-posedness and asymptotical examination of TFTE using the Riemann–Liouville technique. 

Chen has established an analytical solution for the TFTE with three different nonhomogeneous border 

conditions utilising variable separation. Momani [6] explored approximate solutions of space and TFTE 

using the Adomian decomposition approach. Huang [7] found analytical solutions for three main TFTE 

issues: Cauchy and signalling difficulties using Laplace and Fourier transforms, and the boundary problem 

using spatial Sine transform. Dehghan and Shokri proposed a numerical approach for solving hyperbolic 

telegraph equations using collocation points, which they approximated with thin-plate spline radial 

fundamental functions [8]. Yousefi employed the Legendre multi-wavelet Galerkin technique to solve the 

hyperbolic telegraph equation. For the numerical solution of TFTE, Wang discussed and examined the 

Galerkin mixed finite element technique [9]. The use of suitable B-splines for the numerical solution of 

TFTE is motivated by the success of B-splines in the numerical solution of differential equations. There is no 

research on the usage of splines for the fractional telegraph differential equation [10], as far as researchers 

know. There is various research in the literature that uses splines to solve fractional partial differential 

equations. Tasbozan used the cubic B-spline collocation method to obtain a numerical solution for the 

fractional diffusion problem [11]. For the solution of fractional boundary value issues, Akram and Tariq 

proposed a numerical methodology based on the quintic spline collocation method [12]. For the solution of 

the fractional diffusion problem, the cubic B-spline collocation method was applied. Similarly, the quintic B-

spline collocation approach was used to solve a time-fractional super-diffusion fourth-order differential 

equation. The quadratic B-spline Galerkin technique was used to solve numerical TFTE solutions [13]. 

Dimensional Problem in Time Fractional Telegraph Equation 

 Several numerical methods for multidimensional hyperbolic partial differential equations have been 

developed in recent years. For instance, Gao and Chi incorporated the unconditionally stable difference 

techniques to solve a one-space-dimensional linear hyperbolic model. Mohanty and Jain [14] developed 

unconditionally stable alternating dimension implicit techniques for two-dimensional and three-dimensional 

hyperbolic equations. There are few published articles on the numerical solution of three-dimensional 

fractional equations, as far as the authors are aware. Chen devised an ADI finite difference approach for the 

fractional sub-diffusion equation for specific three-dimensional situations. For space-fractional diffusion 
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equations, Wang and Du considered rapid ADI finite difference algorithms [15]. Other researchers developed 

a Backward Euler (BE) ADI difference system for solving the integro-differential equation as a result. The 

work focuses on the three-dimensional time-fractional telegraph equation using the unique spline function as 

a result of the aforementioned concerns. 

2. Literature Review: 

 To solve the three-dimensional time-fractional telegraph problem, Xuehua Yang et al [16] devised an 

efficient alternating direction implicit (ADI) finite difference approach. In the temporal direction, the 

completely discrete scheme is constructed using the L1 discrete formula, and in the spatial direction, the 

finite difference approach. An ADI method is created and implemented to lower the computing cost of 

addressing three-dimensional issues. The research next verifies the scheme's stability and convergence in L 2 

and H1 norms, respectively, using the energy technique. Finally, various numerical examples are provided to 

support the theoretical conclusions. 

 The Cauchy issue for the time-fractional telegraph equation of dispersed order was introduced by 

N.Vieiraet al [17]. A representation of the fundamental solution of this equation in terms of convolutions 

using the Fox H-function is derived using the Fourier, Laplace, and Mellin transform approach. Some 

specific density function options in the form of basic functions are investigated. In the Laplace domain, 

fractional moments of the basic solution are obtained. Finally, the asymptotic behaviour of the second-order 

moment (variance) in the time domain is investigated using Tauberian theorems. 

 The one-dimensional time-fractional telegraph equation, a family of explicit-implicit (E-I) difference 

techniques and implicit-explicit (I-E) different methods, was proposed by Xiaozhong Yang et al [18]. The 

two approaches are based on a hybrid of the conventional implicit and explicit difference methods. The E-I 

and I-E difference schemes are unconditionally stable, with 2nd order spatial precision, 2nd order time 

accuracy, and considerable time savings, and their computation efficiency is superior to the traditional 

implicit scheme, according to theoretical analysis and numerical testing. The E-I and I-E difference 

approaches developed in this article are successful in solving the time-fractional telegraph equation, 

according to the research. 

 To solve the two-dimensional time-fractional telegraph problem, N. Abdi et al [19] suggested the 

Compact Finite Difference (CFD) and rotating four-point compact explicit decoupled group (CEDG) 

techniques. The CEDG approach is formed from a rotational CFD approximation formula combined with the 

grid points being arranged in a group. When compared to the CFD approach on the conventional grid, this 

method outperforms it in terms of CPU timings and iteration while maintaining the same order of accuracy. 

Using Fourier analysis, this verified the stability and convergence of the suggested systems. To show the 

efficacy of the suggested methodologies, certain numerical experiments are carried out. 

 From the 2h-spaced standard and rotational Crank–Nicolson FD approximations, Ajmal Ali et al [20] 

proposed the modified group iterative approach for solving the two-dimensional (2D) fractional hyperbolic 

telegraph differential equation with Dirichlet boundary conditions. The results of the novel four-point 

modified explicit group relaxation approach show that the suggested method has a faster rate of convergence 

than current systems. The competence of the group iterative scheme is compared to that of its point iterative 

equivalents using numerical testing. The matrix norm technique proves the stability of the resulting modified 

group approach. The acquired findings are tabulated, and it is determined that precise and approximate 

solutions are symmetric. 

 Using the Laguerre wavelet collocation approach, Kumbinarasaiah Srinivasa et al [21] established an 

effective numerical methodology for solving the fractional-order (1 + 1) dimensional telegraph problem. 

Convergence analysis is described in terms of a theorem, and several instances are shown to evaluate the 

http://www.jetir.org/


© 2022 JETIR May 2022, Volume 9, Issue 5                                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2205705 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g54 
 

effectiveness of the suggested approach. The fractional-order telegraph problem is turned into a system of 

algebraic equations using the Laguerre wavelet characteristics, and the suggested scheme's solutions are 

more accurate when compared to the analytical solution and other approaches in the literature. 

 For the efficient and accurate numerical solution of a time-fractional diffusion equation in two spatial 

dimensions, Fouad Mohammad Salama et al [22] proposed the modified hybrid explicit group (MHEG) 

iterative approach. In the Caputo interpretation, the time-fractional derivative is defined. In the suggested 

technique, a Laplace transformation is applied in the temporal domain, and a new finite difference scheme 

based on the grouping strategy is examined for spatial discretization. The matrix analysis approach proves 

the unique solvability, unconditional stability, and convergence. The suggested algorithm's feasibility and 

efficiency are demonstrated by a comparison of numerical results with analytical and other approximate 

solutions. 

 The Elzaki decomposition approach was suggested by Nehad Ali Shah et al [23] for evaluating the 

solution of fractional-order telegraph equations. Within the Caputo derivative operator, the approximate 

analytical solution is achieved. The examples are offered as a solution to show that the proposed technique is 

feasible. With the assistance of the figure, the outcome of the proposed approach and the precise solution is 

illustrated and examined. With minimal computing labour and a quick convergence rate to accurate solutions, 

the analytical technique yields the series form solution. The findings revealed a simple and effective method 

for analysing challenges in connected fields of science and technology. 

 For the analysis of one space dimensional time-dependent partial differential equations, Brajesh 

Kumar Singh et al [24] presented the Hybrid Cubic B-spline differential quadrature technique (in short, 

HCB-DQM). The proposed approach was used in particular for the 1D telegraph equation (1D TE). Because 

the HCB-DQM uses DQM with hybrid Cubic-B-splines as basic functions, the 1D TE is reduced to a system 

of first-order ordinary differential equations (ODEs) that can be solved using the SSP-RK43 technique. The 

suggested HCB-DQM is shown to yield stable solutions for the 1D telegraph problem. The precise outcomes 

are compared to the assessed solutions. Furthermore, comparing the appraised results to outcomes that have 

just been published. The provided findings appear to be in good agreement with the exact solutions. 

 Abdelkebir Saad et al [25] devised a fast technique for solving one-dimensional time-space fractional 

telegraph equations. The conformable sense is used to characterise fractional derivatives. This algorithm is 

based on fourth-order shifted Chebyshev polynomials. The fractional telegraph equations in time and space 

are reduced to a linear system of second-order differential equations, which is solved using Newmark's 

approach. Finally, several numerical examples are shown to demonstrate the algorithm's dependability and 

efficacy. 

3. Research Problem Definition and Motivation: 

 

 Fractional Differential Equations (FDEs) have become a lot of interest in recent years since they can 

simulate a lot of things in science and engineering. Meanwhile,no method offers an accurate solution for 

fractional differential equations in general, only approximate solutions may be determined using linearization 

or perturbation methods. Despite the fact that earlier researchers have done a lot of effort, studies on FTEs 

are still in the works. B-splines have been used by some academics to solve FDEs, but only a few studies 

have been done on FTEs. Furthermore, there is no study has been done on using B-spline to solve fractional 

telegraph equations. According to this survey, there are just a few numerical solution techniques for such 

equations, and the majority of these numerical schemes are distributed with ordinary differential equations 

and one-dimensional differential equations of the distributed order. Parabolic partial differential equations 

have typically been used to simulate suspension flows. Hyperbolic equations with parabolic asymptotic 

properties, such as the telegraph equation, can sometimes be used to better model them. The solution of the 

fractional telegraph equation has become an essential research topic due to the continual application of the 
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fractional telegraph equation. As a common fractional diffusion wave equation, fractional Telegraph 

Equations (FTE) are frequently utilised in wave propagation, random walk theory, signal analysis, and other 

engineering domains. Physically, the time-fractional derivative explains the physical phenomena connected 

to the process in the fractional telegraph equation model, which is known as historical dependency. The 

development of effective simulation methods, particularly for multi-dimensional situations, is hampered by 

this. Only a few individuals have looked at the three-dimensional fractional situation, particularly numerical 

equation solutions. With this scheme's encouraging findings, attempts are now being undertaken to adapt the 

formulation to solve the more difficult telegraph equation with fractional-order derivatives. This prompts the 

presentation of a novel approach for solving the time-fractional telegraph equation based on the use of spline 

functions to solve the dimensional problem. 

4. Proposed Research Methodology: 

 The primary objective of this article is to introduce and evaluate a new approach for approximating 

the time-fractional telegraph equation using the spline function. A competent numerical approach for the 

Time-Fractional Telegraph Equation (TFTE) is provided in this research study. The suggested approach 

makes use of a relatively new form of B-spline known as the Trigonometric Quintic B-spline (TQBS). Finite 

difference approaches (explicit and implicit schemes), a prominent numerical method, are often used to 

successfully solve equations. For three-dimensional equations with Dirichlet initial-boundary conditions, 

implicit finite difference techniques are used in this work. The flow diagram for the proposed work is shown 

in Figure 1. 

 

Figure 1: Flow Diagram of the Proposed Work 

 The time-fractional derivative is the primary impediment to the creation of effective simulation 

algorithms in the Fractional Telegraph Equation (FTE) model, particularly for dimensional issues. A 

competent numerical approach for the time-fractional telegraph equation (TFTE) is provided in this research 

study. For the solution of Time-Fractional Telegraph Equations, an operational matrix technique based on the 

combination of Fibonacci wavelets and block pulse functions is presented (TFTs). The suggested approach 

converts the fractional model into an algebraic equation system that can be solved using the Newton iteration 

method. For the solution of three-dimensional time-fractional telegraph equations subject to particular 

starting and Dirichlet boundary conditions, the trigonometric Quintic B-spline (TQBS) using the Crank 
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Nicolson approach is presented. The discretization of the time-fractional derivative is done using the Caputo 

fractional formula. The calculated solutions are obtained using a combination of the Caputo fractional 

derivative and a trigonometric Quintic B-spline. Boundary conditions cannot be met in differential equations, 

but the number of viable solutions is reduced in algebraic equations. The exponentially fitted technique 

employs temporal frequencies in finite-difference formulae to solve initial boundary value issues. The 

suggested algorithm's maximum absolute error and rate of convergence are estimated, revealing that it is 

unconditionally stable and convergent. 

a. Time Fractional Telegraph Equation: 

 Using the wavelet-based approach, this research investigates analytic and approximate solutions to 

the time-fractional telegraph problem. For the solution of Time-Fractional Telegraph Equations (TFTs), a 

new and efficient operational matrix approach based on the combination of Fibonacci wavelets and block 

pulse functions is given. The suggested approach converts the fractional model into an algebraic equation 

system that can be solved using the Newton iteration method. The proposed method's error analysis is also 

looked at. The objective of this article is to employ block pulse functions to develop fractional-order 

operational matrices of integration for Fibonacci wavelets. On the interval [0, 1], the block-pulse functions 

are defined as 

      
 



 


Otherwise

rllr
bl

,0

1,1 
     (1) 

 From the above equation,  ZNNl ,1,,2,1,0  and r represents the 
N

1 . Afterwards, any 

function    1,02Lf   may be distended using the block-pulse function as follows: 

           N

T
N

l

llN BAbaff  




1

0

~     (2) 

 Where,  NB  indicates the       TNbbb  110 ,,,  together with A denotes the  TNaaa 110 ,,,  . 

The model obtains by integrating the vector  NB as 

        


NN BdssB  ~
0

     (3) 

The operational integration matrix for block-pulse functions is denoted by 

     























1000

2210

2221

2









r
    (4) 

 Following that, the fractional-order operational matrix F for block pulse functions is provided by 

          
NN BFBI ~      (5) 

Where, 
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N
F    (6) 

The formula for the l  in equation (6) is as follows: 

         111
121





 llll    (7) 

 The succeeding step is to use block pulse functions to create matrices of fractional order integration 

associated with Fibonacci wavelets. The model obtains the result by integrating the vector (24) 

         



0

Qdss      (8) 

 Where Q denotes the Fibonacci wavelet of MM kk 11 22   order's operational integration matrix. The 

matrices   in (8) are the Fibonacci wavelet matrices of Mk 121  order, which are given by 

     T
MMM kkk 1,21,20,21,21,20,21,11,10,1 111 ,,,,,,,,,,
     (9) 

The Fibonacci wavelets (9) can alternatively be described using block-pulse functions (1). 

         Nmn B,                (10) 

 Assume that  D  value to get the Fibonacci wavelet operational matrix of the integration general 

order. 

           mnQD ,        (11) 

 The fractional-order operational matrix of integration for the Fibonacci wavelet is represented by the 

matrix. After evaluating the relationships (5), (10) and (11) the model gets to the following, 

              
NmnNmnNmn BFBDBDD ,,,         (12) 

Correspondingly, the system derives the following relationship from (11) and (12). 

          
NmnNmnmnmn BFBQQ ,,,,             (13) 

This gives the Fibonacci wavelets the needed operational matrix of general order integration:   

     1

,,,


 mnmnmn FQ 

            (14) 

 For example, if the model is 2k , 3M and 25.1 , the fractional-order operational matrix 
25.1

66Q  

associated with the Fibonacci wavelets, further the equivalent fractional-order operational matrix reads. 
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




































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2679.00864.01950.0000

4514.00278.03194.0000

1475.01579.01147.0000

0965.01180.04248.02679.00864.01950.0

1006.01169.03732.04514.00278.03194.0

0885.01130.04426.01475.01579.01147.0

25.1

66Q  (15)  

Similarly, for 2k , 3M and 1 the matrix have 

  





































2500.01663.01745.0000

5916.004330.0000

02887.00000

004880.02500.01663.01745.0

004330.05916.004330.0

005000.002887.00

66Q          (16) 

i. Description of the Fibonacci wavelet method  

 This section demonstrates the validity of the general order integration operational matrices based on 

Fibonacci wavelets built in the previous section for solving the time-fractional telegraph equations with both 

starting and boundary conditions. Consider the fractional-order telegraph equation below. 

  
   
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












g
f

f
ff

a

     

(17) 

with initial conditions 

       
 

  10,
0,

,0, 21 



 




 y

f
yf   (18) 

and Dirichlet boundary conditions 

            10,,1,,0 10   ufuf   (19) 

 With second-order continuous derivatives, Where, 121 ,, uyy and 2u  be appropriate to  1,02L . To 

solve the telegraph equation (17), the model uses a Fibonacci wavelet basis to approximate the highest partial 

derivative. 

     
 

   








H

f T

22

4 ,
              (20) 

 The unknown Fibonacci wavelet coefficient vector is provided by (12). This might be obtained by 

integrating two times with regard to   

    
 

        



12

2

2

2 ,
yyQH

f T 



           (21) 

Now, two-times integrate (21) concerning  , and thus obtain the following equation. 
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



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

           (22) 

In addition, the equation stated that 
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By substituting (23) for (22) the model get 
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 The model is obtained by taking the fractional derivative on both sides of (24) with regard  . 
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Where 
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 Obtain a system of algebraic equations of the type by substituting the estimates (21), (24), (25) and 

(26) into the supplied model (17) at the predefined collocation locations. 
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      (28) 

 The unknown Fibonacci wavelet coefficient vector may be obtained by solving the system of 

algebraic Equation (28), and then substituting the values of in (24), the system can yield an approximate 

solution of the supplied time-fractional telegraph equation (17). 
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b. Solving Three-Dimensional Equation Problem 

 For the solution of three-dimensional time-fractional telegraph equations, the Trigonometric Quintic 

B-spline (TQBS) using the Crank Nicolson approach is presented, subject to specified starting boundary 

conditions and Dirichlet boundary requirements. The suggested technique combats nonlinearity by 

employing a quasilinearization linearization procedure. The discretization of the time-fractional derivative is 

done using the Caputo fractional derivative formula. The considered solution is obtained using a combination 

of the Caputo fractional derivative and a trigonometric Quintic B-spline. 

 

 

In three dimensions, consider the hyperbolic equation 

    tzyxf
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v
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
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





            (29) 

 Where, ,,,, CBA are Positive functions of yx, and z these are in the domain 

  0,1,,0|,,,  tzyxtzyx . The telegraph equation is the name given to the equation for. 

1 CBA . Initially, 

      zyxvzyxv ,,,, 1 ;      zyxvzyx
t

v
,,0,,, 2




           (30) 

The Dirichlet boundary conditions are defined as follows: 

          tzyatzyvtzyatzyv ,,,,,1,,,,,0 21   

          tzxbtzxvtzxbtzxv ,,,,1,,,,,0, 21           (31) 

          tyxctyxvtyxctyxv ,,,1,,,,,0,, 21   

i. Quintic Trigonometric B-Spline Collocation Method 

 Let divide the domain  ba, into equal-length  1, ii xx intervals n , which include

  ni xbxanihiax  ,,,,1,0, 0 and  ab
n

h 
1

. The degree q , order 1q , polynomial B-spline is 

defined as 

          xBLxBLxB rqrqrqrqrq 1,11,,1,, 1   ,    qrr xxx  1,       (32) 

where 0q , 
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

 




Otherwise

xxxif
xB

rr

r
0

,1 1

,0
. The model obtains fifth-degree 5q basis 

spline functions by combining (29) -(31) with 
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 The spatial domain  ba, is divided evenly into N subintervals of the following lengths h  as follows: 

bxxxxa N  ,,210  . In terms of the value of the spline function at the nodes, a quintic trigonometric 

spline approximation  txu , to the analytic solution  txU , may be written as: 

          





2

2

,
N

m

mm xTBttxu             (34) 

 Where,    2,,2,  Nmtm  is the quintic trigonometric B-spline basis function defined at nodes 

and  xTBm
is the time-dependent parameters to be acquired from boundary conditions and B-spline 

formulation. Outside  Nxx ,0 , the extra nodes 112 ,,  Nxxx , and 2Nx , are positioned in a way of 

hxxxxxxxx NNNN   1212110
. Each quintic trigonometric B-spline basis function takes 

nonzero values at a maximum of five consecutive intervals, from 2mx to 2mx . Let's define the numerical 

solution  txu , at mxx  and ntt  , with and represent the mesh size t in both directions. As a result, the 

numerical values of 
n

mu and their derivatives determined using the B-spline representation Equation (34) are: 

    
n

m

n

m

n

m

n

m

n

m

n
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Where, 
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 The time derivative is discretized using the Crank-Nicolson technique, while the space derivatives are 

approximated using a quintic trigonometric B-spline. When the generalised  scheme is applied to the 

telegraph equation (29), the model produces 

         01 1  n

m

n

mt fu  , 10       (36) 

 Where,    n
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n
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n

m uvuuf   ,      2,1,,1,2  NNm  and Tn ,,2,1,0  . The time 

derivative involved in the above equation is discretized using finite difference   ,
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 resulting in 

the equation 
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111 , 10     (37) 

 Where, 
n

m

n

m uF  ,  n
mx

n

m uG  ,  n
mxx

n

m uH  . To discretize u  and its spatial derivatives by quintic 

trigonometric splines, replace     ,,
n

mx

n

m uu and  n
mxxu in the equation by their respective spline representations 

from Equations (35) to arrive at the final scheme. consider the Crank-Nicolson scheme for time integration, 

5.0 . 
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(38) 

 For Nm ,,2,1,0  and Tn ,,2,1,0  . The above system Equation (38) consists of  1N equations 

in  5N  unknowns, namely 21012 ,,,,,,  NNN   . Only by reducing this system to a system of 

 1N equations in  1N unknowns can a unique solution be found. This is accomplished by removing the 

parameters from the system using the value of Equation (35) 
n

mu and the boundary conditions. As a result, 

construct the following system of equations. 

      BAX                 (39) 
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The values of dcba ,,, and e are as follows: 
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 Consequently, finding the solution at the first-time level, 
n , require an initial vector 

 TN

00

1

0

0

0 ,,   . This initial vector is obtained from the given initial conditions. 

c. Initial Boundary Value Problems 

 Boundary conditions cannot be met in differential equations, but the number of viable solutions is 

reduced in algebraic equations. By utilising temporal frequencies in finite-difference formulae, the 

exponentially fitted technique is meant to solve initial boundary value issues. With the order of convergence 

one, the parameter uniform convergence analysis was conducted. Three model examples with boundary layer 

behaviour are investigated to validate the theoretical finding. The scheme's maximum absolute error, as well 

as its rate of convergence, are calculated. The suggested approach is both convergent and unconditionally 

stable. 
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i. Exponentially Fitted Method for Boundary Value Problem 

 In this section, numerical solutions for problems (29) - (30) will be determined in the stated ranges 

using finite-difference methods. The integral constraint   0,
0

 dxtxu
L

makes computations complicated. To 

overcome this difficulty, reduce the problem to an equivalent problem with classical conditions. Let u  be a 

solution of (29)-(30). Integration of Equation (29) over  L,0  gives 

         0,0,1 



tutLv

t

v
x ,  Tt ,0    (41) 

Relation (41) and condition (30) yields 

        0,01 tv     (42) 

 Now assume that v  satisfies (29)-(30), the boundary condition   0,01 tv and the compatibility 

conditions 

      
L

dxzyxf
0

0,,   
L

dtzyxv
0

2 0,,               (43) 

then, the integration of Equation (29) with respect to v  over  L,0 gives 

       0,,,
02

2





 dxtzyxv

t

L

              (44) 

Hence        tdtddxtzyxv
L

21
0

,,,                (45) 

 Compatibility conditions (43) and (45) imply that   0,,,
0

 dxtzyxv
L

, and conclude that problems 

(29)-(30) and (42) are equivalent. The boundary value problem and (42) are solved by finite-difference 

methods by dividing the space interval Lx 0 into M+1 subintervals each of width h , so that  hM 1  the 

time interval t is discretized in steps each of length  0l . The finite-difference method may be applied for 

Mm ,,2,1  and ,2,1,0n  
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Which after re-arranging becomes 
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






   (47) 

 Where,
22hLP  . The local truncation error   LhtxuTT uu ,;, associated with (47) at the point 

   nm txtx ,,  may be written down from (46) and (29) 
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




  

                    (48) 

Expanding  Ltxu , ,  Lthxu  , in (48) as Taylor’s series about  tx, yields 

   
   

,
12612

1 22 







 xxxxtxxttttttu uh

ta
Lu

ta
uT              (49) 

 The convergence matrix is  22 LhO  as 0, Lh . The finite-difference method (47) may be applied 

for Mm ,,2,1  and ,2,1,0n . In these cases, 0m , it requires some modifications and maybe 

simplified a little when 2 Mm .Let 1nA  be a vector whose elements are ordered in rows parallel to the t-

axis which is of an order  2M that takes the form.  

ii. Implementation and Stability Analysis 

 The Von Neumann method is employed to analyse the stability of the finite-difference 

approximations presented in (47). This approach looks for the circumstances in which minor form mistakes 

occur. 

     nlmhin

m

n

m

n

m eeAAZ 
~

   (50) 

 Where,   is real and   is complex, 1i  and n

mA
~

is perturbed numerical solution necessary 

conditions for the error to grow as n . 

      
x

l Me 1      (51) 

 From the equation, xM  is a non-negative constant independent of lh, . The condition in (51) makes 

no allowance for growing solutions if 0xM . Substituting Equation (50) into (47) leads to the local stability 

Equation. 

             02cos12cos12   lllal eehetpahetpa     (52) 

Which implies 

     

 

 
2

sin41

2
sin41

2

2

h
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h
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e l











    (53) 

 The von-Neumann necessary condition for stability is 1le , that is the stability restriction is 

  04 tpa , which implies   0ta and 0p which agrees with the conditions. 
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5. Experimentation and  Results Discussion: 

 A trigonometric quintic B-spline based on the Fibonacci wavelet method for the solution of the time-

fractional telegraph equation is presented and discussed. Two test examples are used in this section to 

demonstrate the scheme's efficiency, accuracy, and computing complexity. The exact solution, approximate 

solution, and error values were computed for 𝛼 = 1.95 and different M  values. The results were 

demonstrated in Tables 2-3. All tests are run on a Windows 10 computer with MATLAB R2021b (64 bit, 

CPU 2.20 GHz, 8.0 GB of RAM). To demonstrate the nature of the solution for varied times t , the numerical 

solution is also visually shown in relation to the analytic solution. 

Table 1: System Configuration 

   MATLAB  Version R2021a 

   Operating System  Windows 10 Home 

   Memory Capacity  6GB DDR3 

   Processor  Intel Core i3 @ 3.5GHz 

 Table 1 shows the Matlab simulation machine configuration for solving stochastic differential 

equations using an appropriate numerical integration approach. The absolute error is used to assess the 

accuracy of the suggested technique in this study. 

         ,, ,mnabs ffE               (54) 

Numerical Examples: 

               In this section, several illustrated cases have been provided to demonstrate the applicability and 

efficiency of the proposed wavelet technique. In both linear and nonlinear scenarios, numerical examples are 

addressed. 

Example 1. Consider the following 𝛼th order telegraph equations 
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


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


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






            (55) 

subject to the initial conditions   00, f , 
 

 1
0,









f
, 10   

and Dirichlet boundary conditions     0,1,0   ff , 10   

 Where,  
 

 
  


  2

3

2
, 22 













 g . The exact solution to this problem is 

     2,f .  
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(a)  (b)  

 
(c)  

Figure 2: Approximate Solution of Example 1 

 Figure 2 depicts the approximate solutions to Example 1 visually. The approximate solution is shown 

in Figure 2(a), the precise solution is shown in Figure 2(b), and the graphical representation of absolute error 

is shown in Figure 2(c). The acquired absolute errors of (55) for various values are given in Table 2 to show 

the effectiveness and accuracy of the suggested approach. The approximation results achieved with Fibonacci 

wavelets are better and more accurate, as seen in these tables. 

Table 2: Absolute Error of Proposed Method for Example 1 

 ,  Proposed Method 

 1.1  2.1  5.1  

(0.1,0.1) 1.5276 × 10−18 6.6353 × 10−18 1.9741 × 10−18 

(0.2,0.2) 0 4.5797 × 10−18 4.3715 × 10−18 

(0.3,0.3) 0 4.6491 × 10−18 8.6736 × 10−18 

(0.4,0.4) 1.5821 × 10−18 0 6.6475 × 10−1 

(0.5,0.5) 2.2413 × 10−1 7.6328 × 10−18 6.7446 × 10−18 

(0.6,0.6) 0 7.9103 × 10−18 6.2172 × 10−18 

(0.7,0.7) 4.7462 × 10−18 2.6645 × 10−18  1.4433 × 10−18 

(0.8,0.8) 4.7462 × 10−18 1.1142 × 10−18 3.3307 × 10−18 

(0.9,0.9) 6.9389 × 10−18 1.2490 × 10−18 2.3453 × 10−18 

Example 2: Consider the following 𝛼th order telegraph equations 

 

  
   

 
 

 









 

,
,

,
,,

2

2

1

1

g
n

f
f

ff
aa



















,   21  (56) 
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with initial conditions  
 

0
0,

0, 










f
f , 10   and Dirichlet boundary conditions   0,0 f , 

   1sin,1 3 f , 10   

 Where,  
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     





  2cos2sin

5

33

4

33
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





 g . The exact solution of 

(64) is      23 sin, f . 

  
(a)  (b)  

 
(c)  

Figure 3: Numerical Results for Approximate and Exact Solution 

 

 Figure 3 shows the approximate solution, absolute error, and precise solution of Example 2 in 3D at 𝛼 

= 1.95. Figure 3(a) denotes the approximate solution and figure 3(b) stated the exact solution. The absolute 

error implementation was explicated in figure 3(c). The approximate solutions are in good agreement with 

the actual solution of the issue, as shown in Figure 3. The numerical solutions derived using the Fibonacci 

wavelet matrix approach agree with the exact solutions sufficiently. 

 

Table 3: Comparison of Maximum Absolute Error for Example 2 

 

 

  

Fibonacci Wavelet Legendre Wavelet 

M=3 M=4 M=3 M=4 

1.15 4.1184 × 10-5 6.3146 × 10-6 4.6439 × 10-5 7.5593 ×10-6 

1.35 3.0138 × 10-5 6.4611 × 10-6 4.5474 ×10-5 7.3935 ×10-6 

1.55 3.0138 × 10-5 5.8519 × 10-6 4.4293 ×10-5 7.1980 ×10-6 
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1.75 4.1642 × 10-5 6.8947 × 10-6 4.2909 ×10-5 6.9749 × 10-6 

1.95 4.2956 × 10-5 6.2791 × 10-6 4.1016 × 10-5 6.6688 × 10-6 

 

 Table 3 presents a comparison table for the greatest absolute error for various values M and 

demonstrates the validity of the suggested strategy. Table 3 shows that the approximate solution achieved 

using Fibonacci wavelets is more precise than the approximate solution found using Legendre wavelets. 

 

 

8. Conclusion 

 Fractional differential equations have sparked a lot of curiosity in recent years. The FD technique, on 

the other hand, has several inherent drawbacks, particularly for problems with high dimensions, strong 

gradients, and complicated geometry. At the moment, there is relatively little study on the subject of 

fractional telegraph equations. B-splines have been used by several academics to solve FDEs, but only a few 

studies have been done on FTEs. As a result, for the solution of three-dimensional time-fractional telegraph 

equations, research integrated Trigonometric Quintic B-spline (TQBS) with the Crank Nicolson approach is 

presented. The calculated solutions are obtained using a combination of the Caputo fractional derivative and 

a trigonometric Quintic B-spline. Fibonacci wavelets and the conventional newton iteration approach are 

used to generate solutions to Time-Fractional Telegraph Equations (TFTs). The proposed scheme engages 

the usual finite forward difference formulation for initial-boundary problems respectively. 

 Numerical solutions derived using the Matlab software are found to be superior to those previously 

published in the literature. The scheme's key advantages are ease of implementation, reduced complexity, 

and low computing costs. Higher-dimensional FDEs can be handled well using this method. The scheme's 

applicability, simplicity, and strength in solving the time-fractional telegraph problem with accuracies 

extremely near to the actual solutions are demonstrated numerically. The computational order of convergence 

 22 LhO  is conformable with the theoretical estimations. Furthermore, the suggested scheme's convergence 

is investigated, and the scheme is shown to be unconditionally stable. The numerical simulation has been run 

for two test examples, which show that the proposed scheme can efficiently be employed for the numerical 

treatment of time-fractional problems. The simulation results show a superior agreement with the exact 

solution as compared to those found in the literature. 

9. Acknowledgment: Author is thankful to the Editor and Referee for their valuable guidance and 

suggestions. 

References: 

[1]  Akram, T., Abbas, M., Iqbal, A., Baleanu, D. and Asad, J.H., 2020. Novel numerical  approach 

based on modified extended cubic B-spline functions for solving non-linear  time-fractional telegraph 

equation. Symmetry, 12(7), p.1154. 

[2]  Kumar, A., Bhardwaj, A. and Dubey, S., 2021. A local meshless method to approximate  the time-

fractional telegraph equation. Engineering with Computers, 37(4), pp.3473- 3488. 

[3]  Ali, A. and Ali, N.H.M., 2019, August. Explicit group iterative methods for the solution  of two-

dimensional time-fractional telegraph equation. In AIP Conference  Proceedings (Vol. 2138, No. 1, p. 

030006). AIP Publishing LLC. 

http://www.jetir.org/


© 2022 JETIR May 2022, Volume 9, Issue 5                                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2205705 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g70 
 

[4]  Hafez, R.M. and Youssri, Y.H., 2020. Shifted Jacobi collocation scheme for  multidimensional 

time-fractional order telegraph equation. Iranian Journal of  Numerical Analysis and Optimization, 10(1), 

pp.195-223. 

[5]  Majeed, A., Kamran, M. and Asghar, N., 2021. Solution of non-linear time fractional  telegraph 

equation with source term using B-spline and Caputo derivative. International  Journal of Nonlinear 

Sciences and Numerical Simulation. 

[6]  Hafez, R.M., 2018. Numerical solution of linear and nonlinear hyperbolic telegraph  type 

equations with variable coefficients using shifted Jacobi collocation  method. Computational and 

Applied Mathematics, 37(4), pp.5253-5273. 

[7]  Hassani, H., Avazzadeh, Z. and Machado, J.T., 2020. Numerical approach for solving  variable-

order space–time fractional telegraph equation using transcendental      Bernstein series Engineering with 

Computers, 36(3), pp.867-878.  

[8]  Sweilam, N.H., Nagy, A.M. and El-Sayed, A.A., 2020. Sinc-Chebyshev collocation  method for 

time-fractional order telegraph equation. Appl. Comput. Math, 19(2),  pp.162-174. 

[9]  Ibrahim, W. and Bijiga, L.K., 2021. Neural Network Method for Solving Time- Fractional 

Telegraph Equation. Mathematical Problems in Engineering, 2021. 

[10]  Modanli, M. and Akgül, A., 2020. On Solutions of Fractional order Telegraph partial  differential 

equation by Crank-Nicholson finite difference method. Applied  Mathematics and Nonlinear 

Sciences, 5(1), pp.163-170. 

[11]  Tapaswini, S. and Behera, D., 2020. Analysis of imprecisely defined fuzzy space- fractional telegraph 

equations. Pramana, 94(1), pp.1-10. 

[12]  Ezz-Eldien, S.S., Doha, E.H., Wang, Y. and Cai, W., 2020. A numerical treatment of  the two-

dimensional multi-term time-fractional mixed sub-diffusion and diffusion- wave equation. Communications 

in Nonlinear Science and Numerical Simulation, 91,  p.105445. 

[13]  Wang, F. and Hou, E., 2020. A direct meshless method for solving two-dimensional  second-

order hyperbolic telegraph equations. Journal of Mathematics, 2020. 

[14]  Abbaszadeh, M. and Dehghan, M., 2021. A finite-difference procedure to solve weakly  singular 

integro partial differential equation with space-time fractional  derivatives. Engineering with 

computers, 37(3), pp.2173-2182. 

[15]  Xu, X. and Xu, D., 2018. Legendre wavelets direct method for the numerical solution  of time-

fractional order telegraph equations. Mediterranean Journal of  Mathematics, 15(1), pp.1-33. 

[16]  Yang, X., Qiu, W., Zhang, H. and Tang, L., 2021. An efficient alternating direction  implicit 

finite difference scheme for the three-dimensional time-fractional telegraph  equation. Computers & 

Mathematics with Applications, 102, pp.233-247. 

[17]  Vieira, N., Rodrigues, M.M. and Ferreira, M., 2021. Time-fractional telegraph equation  of 

distributed order in higher dimensions. Communications in Nonlinear Science and  Numerical 

Simulation, p.105925. 

[18]  Yang, X. and Liu, X., 2021. Numerical analysis of two new finite difference methods  for time-

fractional telegraph equation. Discrete & Continuous Dynamical Systems- B, 26(7), p.3921. 

http://www.jetir.org/


© 2022 JETIR May 2022, Volume 9, Issue 5                                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2205705 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g71 
 

[19]  Abdi, N., Aminikhah, H. and Sheikhani, A.R., 2021. High-order rotated grid point  iterative 

method for solving 2D time fractional telegraph equation and its convergence  analysis. Computational 

and Applied Mathematics, 40(2), pp.1-26. 

[20]  Ali, A., Abdeljawad, T., Iqbal, A., Akram, T. and Abbas, M., 2021. On Unconditionally  Stable New 

Modified Fractional Group Iterative Scheme for the Solution of 2D Time- Fractional Telegraph 

Model. Symmetry, 13(11), p.2078. 

[21]  Srinivasa, K. and Rezazadeh, H., 2021. Numerical solution for the fractional-order one-

 dimensional telegraph equation via wavelet technique. International Journal of  Nonlinear Sciences 

and Numerical Simulation, 22(6), pp.767-780. 

[22]  Salama, F.M., Abd Hamid, N.N., Ali, N.H.M. and Ali, U., 2022. An efficient modified  hybrid 

explicit group iterative method for the time-fractional diffusion equation in two  space dimensions. AIMS 

Mathematics, 7(2), pp.2370-2392. 

[23]  Shah, N.A., Dassios, I. and Chung, J.D., 2021. A Decomposition Method for a  Fractional-Order 

Multi-Dimensional Telegraph Equation via the Elzaki  Transform. Symmetry, 13(1), p.8. 

[24]  Singh, B.K., Shukla, J.P. and Gupta, M., 2021. Study of One Dimensional Hyperbolic  Telegraph 

Equation Via a Hybrid Cubic B-Spline Differential Quadrature  Method. International Journal of Applied 

and Computational Mathematics, 7(1), pp.1- 17. 

[25]  Saad, A. and Brahim, N., 2021. An efficient algorithm for solving the conformable  time-space 

fractional telegraph equations. Moroccan Journal of Pure and Applied  Analysis, 7(3), pp.413-429. 

 

http://www.jetir.org/

